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Climb of a bore on a beach. 
Part 1. Uniform beach slope 

By D. V. Hot AND R. E. MEYER 
Brown University, Providence, Rhode Island 

(Received 21 May 1962) 

The shoreward travel of a bore into water at rest on a beach of uniform slope is 
studied to elucidate why, in a class of problems-mainly gas-dynamical ones 
involving non-uniform shock propagation-similarity solutions seem to act like 
magnets attracting other solutions. For the shallow-water problem, the real 
magnet is shown to be the shore singularityofthegoverningdifferentialequations. 
The shore singularity of the solution is shown to be a directional singularity of 
the water acceleration, for a fairly wide range of conditions, and a rather detailed 
asymptotic approximation for the bore development near shore is deduced. 

1. Introduction 
Interest has been shown in recent years in a class of gas-dynamical problems 

involving the non-uniform propagation of shock waves, which present diffi- 
culties on account of both their strong non-linearity and their awkward boundary 
conditions. To date, virtually the only bona fide analytical solutions available 
for this class of problems are the ‘similarity’ solutions, developed extensively by 
Sedov and his school, and typified by Guderley’s (1942) now famous solution for 
the converging cylindrical shock. This was obtained by looking, not for the solu- 
tion satisfying boundary conditions of a type known to  be necessary and sufficient 
for the determination of a solution, but by looking only for a particular solution 
depending, rather than on radius and time separately, on a combination of both 
such as (t-”r). That such a particular solution should be of use for boundary 
conditions differing appreciably from those it happens to satisfy is not immedi- 
ately obvious, but numerical computation (Payne 1957) of some relevant cases 
yielded solutions which, despite marked differences in their initial behaviour, 
soon converge very closely to Guderley’s. It therefore appears that, for some 
range of initial conditions, the gas motion forgets its initial conditions, and it is 
of academic and practical interest to understand a little how it comes about in 
such very non-linear problems. 

Now, Keller, Levine & Whitham (1960) have computed three comparison 
cases of bores travelling shoreward into water at rest on a beach of uniform slope, 
and have shown how the solutions, while initially rather different, converge 
towards each other as the bore approaches the shore. Their ‘shallow water’ 
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problem is therefore an analogue of the gas-dynamical problems showing forget- 
fulness, and, being much the simplest analogue known to us, is used in the follow- 
ing as the example in whose context forgetfulness will be studied. 

Our approach is based on the observation that non-trivial similarity solutions 
have a singularity, as is obvious from the form of the independent variable, and, 
in the gas-dynamical similarity solutions, that singularity occurs usually at  a 
singularity of the governing differential equations. In  fact, those equations are 
mostly variants of the Euler-Poisson-Darboux equation, 

a 2 # / a y 2 -  a2# /az2 -  kz-la#/az = o (k: = const.), (1)  

which is called singular at z = 0. It will emerge below that the phenomenon of 
forgetfulness is due to this singularity, rather than any non-linearity, of the 
equations. 

The field of singular partial differential equations is not yet well explored. 
Mathematical students of the subject may be attracted to the ‘singular Cauchy 
problem ’, i.e. the question of what boundary conditions prescribed on the singular 
line z = 0 are necessary and sufficient for the existence, uniqueness and stability 
of solutions. Physically, however, this problem may be absurd. In  shallow-water 
theory, for instance, z = 0 corresponds to zero water depth, and who would try 
to control the sea by doing something to the water at a place where there is, in 
fact, no water? The same remark applies in gasdynamics when the singularity 
corresponds to vacuum; the mathematical trap is not so obvious when the singu- 
larity corresponds to an axis of symmetry, but it is still clear that a direct physical 
realization of boundary conditions on such an axis is not possible. It is therefore 
of the essence of singular partial differential equations, where they arise from 
physics, that they occur with boundary conditions prescribed at a distance from 
the singularity of the equations. To bridge this gap is one of the basic mathematical 
tasks. 

Perhaps, it should be stressed still further that the main difficulty turns out to  
arise from the boundary conditions, rather than from the non-linearity (which 
wil l  be removed, temporarily, in $2)  of the differential equations. Part of the 
boundary conditions are furnished by the bore relations ($  2) ,  which represent a 
JEoating boundary condition of awkward algebraic form. The rest is furnished by 
a seaward boundary condition ($$ 3, a), which is firm and linear, in the formulation 
adopted below-but which is just that boundary condition which the solution 
is expected to forget. A second difficulty arises from the fact that the solutions of 
(1) can have uncommonly complicated singularities at z = 0. 

The tool used below for bridging the gap between the seaward boundary con- 
dition and the singularity of the governing equations is the theory of structure of 
equations of the type of (1). It has been developed fairly completely (Meyer 
1949, 1958) for the regular equation (z  2 8 > 0 ) ,  and is applied here with the aim 
of obtaining restrictions on the possible qualitative behaviour of all solutions in 
the regular region ( z  > 0 )  sufficient to leave only one singularity admissible. 

To achieve this, a monotoneity assumption concerning the seaward boundary 
condition is introduced in $4. Physically, i t  amounts to a somewhat intricate 
statement regarding the signature of the fluid acceleration. We conjecture that 
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it is a sufficient, rather than a necessary, assumption for the results we deduce, 
but also that it contains some of the essence of the assumption necessary to en- 
sure the phenomenon of forgetfulness. In  the laboratory, the bore might be 
generated by pushing a wave-maker piston into water at  rest, and the experi- 
menter would be at liberty to continue the piston motion at will and thereby 
influence the development of the bore. Indeed, by withdrawal of sufficient water, 
he might prevent the bore from reaching the shore. The need for an inequality 
concerning the acceleration at the seaward boundary is thus plausible. We also 
subject the seaward boundary conditions to certain regularity assumptions 
($93, 4), partly on straightforward physical grounds, and partly to keep the 
discussion within the common language of elementary calculus. Finally we add, 
in $ 3, the (mathematically illegitimate) assumption that the bore reaches the 
shore at a finite time; its relation to the monotoneity assumption will not be 
studied here, but we show in $7 ,  by comparison with the numerical results of 
Keller et aZ.( 1960), that our assumptions are compatible. 

From these assumptions, we deduce in $5 certain qualitative properties of 
limits at the shore, which are shown in $6  to determine the solution near the shore 
also quantitatively to a notably high approximation. It exhibits forgetfulness 
in a striking manner, since the first approximation to the non-dimensional bore 
description that contains a parameter depending on the seaward boundary con- 
dition is the approximation of the seventh order ! None the less, the concept of 
forgetfulness emerges as a somewhat misleading one. The strong role played by 
the monotoneity assumption in our proof indicates that the solution remembers, 
and is indeed critically determined by, certain qualitative properties of the sea- 
ward boundary condition. It is only the quantitative detail of that boundary 
condition which the (non-dimensional) solution all but forgets. Moreover, the 
basic velocity scale is found to depend on the seaward boundary condition; the 
basic acceleration scale, by contrast, depends only on the beach slope. 

2. Governing equations 
A straight bore is assumed to travel in the direction of x increasing into un- 

disturbed water of depth h,(x). The water motion behind the bore is assumed 
governed by the ' first-order shallow-water ' equations (Stoker 1957), according 
to which the vertical water velocity is neglected, the horizontal water velocity u 
in the direction of x increasing does not vary in the vertical direction, and the 
total water depth h(x, t )  (figure 1) is related to u by 

ahjat + a(hu)/ax = 0, (2) 
au/at+uau/ax+ga(h-h,)/ax = 0, (3) 

where g denotes the gravitational acceleration. These equations are not valid 
within the bore itself, but if the bore be regarded as a discontinuity of the motion 
such that u jumps from 0 to ub, and h from h, to hb > h,, then these discontinuities 
are related to the bore velocity 

dxb/dtb = v (4) 
by (Stoker 1957) Ub/V l-hO/hb, ( 5 )  

2 V2 = gh*(l + hb/h0). ( 6 )  
20-2 
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Our primary concern is with the bore motion in the vicinity of the initial 
shore line h, = 0, and it will be shown in Part 2 that this motion is, to a first 
approximation, independent of the beach shape, provided the beach slope is 
non-zero and finite. We need not hesitate, therefore, to avail ourselves in Part 1 
of the drastic formal simplification afforded by the assumption of uniform beach 
slope. Let 

h,(x) = -yx/g (y = const. > O ) ,  ( 7 )  

c2 = gh(x,t) (c 2 O ) ,  (8) 
a =  2c+u+yt-u, ,  p =  2c-u-yt+u, ,  (9) 

FIGURE 1. Definition sketch (a  greatly contracted horizontal scale being implied). 

where u, is a constant to be chosen presently. Then from (2) and (3) we have 

a = const. on the lines dx/dt = u + c, (10) 

/3 = const. on the lines dx/dt = u - c, (11) 

called respectively advancing and receding characteristic lines. 
It is convenient to employ the characteristic parameters a, p as independent 

variables. The legitimacy of this transformation is not obvious a priori, but we 
may proceed formally, and it will emerge by and by that the transformation 
is regular a t  the positions and times under consideration. If partial differentia- 
tion with respect to a and /3 be denoted by subscripts, (10) and (11) become 

XI = (u + c)  tfl, x, = ( u  - c )  t,, 

tap++(a+P)-l(t,+tI) = 0, (13) 

(12) 

and cross-differentiation yields (Carrier & Greenspan 1958) 

a particular case of (1). It is notable that (13) also arises for waves on shallow 
water of constant depth h,, but of course, the interpretation is different in the 
present case, where 

complete the system (12). The canonical equations of (13) are 
(14) 

= -$(.+/3)-'b, b, = -$(a++P)-la, (15) 

where a = (a+/3)*ta, b = (a+/3)*tI. (16) 

u+ yt-u, = +(a-B), c = t(a+p) 

The bore relations (5 ) ,  (6) furnish floating initial conditions for (15). Both the 
uniqueness theorem (Friedrichs 1954) and physical considerations indicate that 
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a further boundary condition specifying information on the water motion 
behind the bore is required, and that at least some of its features must be antici- 
pated to influence the bore motion appreciably. On the other hand, i t  will emerge 
in the next section that the amount of seaward information required is limited. 

3. The limiting characteristic 
The assumption that the bore reaches the shore in a finite time has some 

drastic implications, to be discussed now. Time will be measured from the moment 
at which the bore reaches the shore, and our concern is then only with t < 0, and? 

This implies, by (5), (6) and (8), 

D’ 

B I ~ U R E  2. Diagram of (2, t)-plane showing locus of successive bore positions 
(bore initially supercritical). 

The successive bore positions z b ( t )  may be traced in an (z, t)-plane (figure 2). On 
physical grounds, the bore height hb - h, will be assumed a single-valued continu- 
ous function oft, for t < 0, except a t  times at which two bores merge; but if t, be 
the last negative time at which that occurs, we may limit our attention to 
t, < t < 0. By (6), V(t) is then also single-valued and continuous, and so are ab(t) 
and ca(t), by ( 5 )  and (8). Given any t c 0, it therefore follows from (19) and (10) 
that the bore meets a t  that time just one advancing characteristic line of the 
water motion behind it, and the limit t 7 0 defines a limiting member L of this 
family of characteristic lines. The importance of this ‘limiting characteristic ’ 
was first realized by Guderley (1942), and the name is even more appropriate 
than has been generally appreciated. In  figure 2, the region I corresponding to 
water at rest and the region between L and the bore path B contain all the points 

-f A suffix b will be used throughout to denote the limit of a quantity as the bore is 
approached from the seaward side. 
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(x, t )  from which the bore path can be reached by following a characteristic line 
in the sense of increasing time. The water motion a t  points in other regions can 
have no influence on the bore development for t < 0, and is thus irrelevant to the 
present investigation. In  what follows, the ‘value ’ of any quantity at a ‘point ’ 
on L can therefore, like the point itself, have a meaning only as a limit approached 
by some limiting process in which L is approached from the region between B 
and L. 

For definiteness, assume the bore to be known up to some negative time T > t,, 
and let C denote the receding characteristic line of the water motion behind the 
bore which issues from the bore at  time T (figure 2, which is drawn for the ‘super- 
critical’ case ub > c b ) .  Then (Friedrichs 1954) knowledge of u and h on, and only 
on, the segment of C between B and L (figure 2) isnecessaryfor theunique deter- 
mination of the bore development for T < t < 0, and this segment of C may be 
called the (mathematical) seaward boundary. The position of L in the (2, t)-plane 
is not, however, known in advance, so we must assume Pb(T)  to be known and a! 
to be given as a function a,(t) on C over a sufficient interval T < t < T‘. 

Observe that no generality is lost in taking the water motion to be bore-free 
in the interior of the region I1 (figure 2 )  bounded by C, B and L. To see this, begin 
by supposing an advancing? bore enters (in the sense of increasing time) this 
region from its boundary. That it enters across L is incompatible with the defini- 
tion of the limiting characteristic, since V < u + c on the shoreward side of an 
advancing bore. The same inequality excludes the bore’s leaving the region across 
L. It enters therefore across C and either merges with the original bore, which is 
also advancing, or peters out a t  t < 0. A merger at  t = 0 would leave the existence 
of L unimpaired, i.e. the second bore would not penetrate into the interior of the 
region I1 of the original bore. But a merger at t < 0 is excluded by the condition 
T > t,, and a bore petering out a t  t < 0 can be similarly removed from considera- 
tion by a reduction of IT I. 

Next, suppose a receding bore enters region I1 from the boundary with non- 
zero strength. It cannot do so from B, due to the absence of advancing bore 
mergers. But if it  enters across C, then it must leave across L, or peter out at  
t < 0, and can thus also be removed from consideration by a reduction of ]TI. 
Finally, the same arguments apply also to any bore forming in the interior of 
region I1 or, with zero strength, on its boundary. We therefore postulate IT1 
to be chosen so that the water motion is bore-free in the interior of region 11. 

It follows that a,(t) is a continuous function and, if our assumptions are con- 
sistent, (2) and (3) must possess a continuous solution in the interior of region 11. 
It is, in fact, uniformly continuous, since the continuity of a! on C implies the 
boundedness of a! ‘on L’, by (lo), and it follows from (9) and (17) that Ub must 
tend to a finite limit as t + 0 (Keller et al. 1960), which will be identified with 
the constant uo of (9), so that 

a!= 0,  and P + O  as t + O ,  ‘onL’,  (20) 

ub +u0, ab+ 0,  P b +  0 as t -+ 0 on the bore. (21) 

-f That is a bore across which the water height rises from the shoreward to the seaward 
side. 
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It follows from (5) and (6) that h, cannot remain positive when h, = 0,  i.e. 
h, and h, must vanish together (Keller et al. 1960), as indicated in figure 2. Whether 
the shore line h(x,  t) = 0 moves beyond its initial position at t > 0, will be studied 
in Part 3. 

Moreover, if our assumptions are physically consistent, the solution of (2) 
and (3) must be single-valued in the interior of region 11, since (Mahony 1956) 
multi-valuedness could be removed only by the appearance of a second bore. 
A general existence proof is beyond the scope of the present study, but ($7 )  
the numerical results of Keller et al. (1960) confirm the consistency of our assump- 
tions in some cases, at least. 

4. A monotoneity assumption 
To facilitate the calculation of values on L, we assume dtlda, to be a piecewise 

continuous function of a,. The same follows for a from (16), and by (15) and (16): 

alpp = - 3 d ,  (22) 
so that a remains a piecewise continuous function in region I1 for t < 0. The bore 
conditions (5) and (6) imply a relation between a and b on the bore, which can be 
used (Ho & Meyer 1962) to show that the piecewise continuity of ab implies that 

FIGURE 3. Diagram of characteristic plane. 

ofb,fort < 0, andby(15)and(l6), bremainsalsopiecewisecontinuousinregionI1. 
With the choice of T at our disposal, a(a, p) and b(a, p) may therefore be considered 
uniformly continuous in region 11, for t < 0,  and a even for t < 0. To simplify 
a proof in $5, we shall also assume there that d2tfdaz be piecewise continuous, 
even though a somewhat weaker assumption would suffice (Ho & Meyer 1962). 

Our main assumption, however, is that cc,(t) is strictly increasing. It implies, 
first of all, that t, > 0 everywhere in the interior of region 11. Indeed, suppose 
a point P occurs where t, < 0. Then since t, 2 0 on C and by (22), P must be 
preceded on the same advancing characteristic line by a point where t, = 0. 
And similarily, a point where t, = 0 must be followed by one where t, < 0. This 
would imply (Meyer 1949) the occurrence of a ‘limit line’ t, = 0 and the multi- 
valuedness of the solution, in contradiction to the conclusions of the preceding 
section. 
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This argument applies also to the seaward boundary itself and shows t ,  + 0 
on C ,  so that the monotoneity assumption is seen to imply the differentiability 
of a,(t) and 

This implies, in turn, that 

since the contrary would require the intersection of two advancing characteristic 
lines carrying different values of a, and hence, multi-valuedness of the solution. 
Now, as hb$O, also ( a b + P b ) + O ,  by (8) and (14), but abfO, by (24) and (21), so 
the bore path in the characteristic plane (figure 3) must approach the origin from 
a direction such that the bore slope da,,/dPb = a; satisfies 

da,/dt > 0. (23) 

dab/& > 0 for t < 0, ( 2 4  

5. Limits at the shore 
The last inequality may be used to confirm the assumption 

lim u b  = u, > 0 
c-20 

of Keller et al. (1960). Indeed, by (14), (4), (8) and (7), 

At sufficiently short times before the bore reaches the shore, 7Lb > h, and hence 
both cb/V < 1, by (6) and (8), and dholdhb < 1, since hb and h, vanish together 
($3).  By (25 ) ,  therefore, dub/dcb < 0 at such times, i.e. Ub increases ultimately, 
and (26) now follows from (19). 

A number of other limits? follow (Keller et al.) from (26). By (18), 

0 < lim (ho/hb) < 1, 
and so from (5 ) ,  (6) and (8),  

lirn (ghg/h,) = lirn [c",(gh,)] = 2u& (27) 

lim V = uo, lim [ (v-ub)/cE] = (2w0)-I.  (28) 

(29) 

By (4) and (7), (27) and (28) imply also 

lim (c,-4xb) = -1im (c;4gh0/y) = lim (uoc;4tb) = - ( 2 y ~ ; ) - ~ .  

The main contribution of the present investigation is the 

Lemma: lima(0, ,8) + 0. 

The existence of this limit follows from the uniform continuity of a (94). Since 
t, > 0 in the interior of region I1 (figure 2 ) ,  t, and a must be non-negative on L, 
and since a zero of a on L would, by ( 2 2 ) ,  be followed promptly by negative values, 

a(0,P) > 0 for t < 0, 
lima(0,P) = a, > 0, and the Lemma implies 

t Unless the contrary is indicated, limits will now be understood taken as c --f 0. 
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where from the structure of the shore singularity will be deduced at  the end of this 
section. 

To establish the Lemma, we begin by strengthening (25). On the bore, 

tb-aLt, = cbl( v-ub)dtb/dP, 

by (12) and (4); on the other hand, dtb/dP = ait,+ta, and so by (28), 

lirn [t,,&p/dt] = lirn [t,da/dt] = 8 

lim (~-3t,) = - (4yui)-llim (1 + a;-1) 

(32) 

(33) 

on the bore. It follows, by (14) and (29), that 

on the bore, if we suppose lim a; + 0. But this leads to a contradiction, as follows. 
By (13), (14) and (32), as c -+ 0 on the bore, 

a(c-2t,)/8/3 N - + ~ - ~ t , ( l +  3( 1 + a;)/8>, 
a(c-3ta)/ap - 2C-4ta{1 + (1 + 4 / 2 1 .  

Thus if - 1 < lirn a; < 0, then r 3 t ,  tends to a finite positive limit, and c-zt, < 0 
on L (figure 3), for sufficiently small c. Again, if lirn a; = - 1, then lirn c-at, = 0, 
and r 3 t ,  < 0 on L, because (33) then shows r 4 t ,  - (yu;)-' c-ldc/dP -+ + 00 on 
the bore, as both c and P $0 .  Both conclusions contradict (30), and so (25) must 
be replaced by 

and the image of region I1 (figure 2 )  in the characteristic plane must indeed be as 
shown in figure 3. 

limai = 0, (34) 

It follows, by (16), (32) and (29), that 

Note also that, since t (0 ,  P) + 0 on L, 

lim p-* b( 0, p )  = 0, (37) 

by (16). For fixed 
so that 

> 0, moreover, (15) shows b,(a,,P) to exist for a, < a, < 0,  

b(ab, P) - b(o, 8) = abba(al ,  = -@(%, P)  ab(al +PI-' 
= O[a(a,, P)  41, (38) 

and b is, like a, uniformly continuous in region I1 for t < 0. 
Now consider the integral 

over the characteristic rectangle PQQIPl of figure 4. By (34), the point P on B 
can be chosen so that Ig/q]  << 1 for y/uo << 1, and then by (15), (16), 

since 
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a, = ;(a +p)-la + (a +p)Wtpa2, 

and ql may be chosen so that P’Q, is a segment of the seaward boundary C ,  
where a, is seen to be bounded, if we now appeal to the piecewise continuity of 
d2t/da,2. Hence, 

(39) 

I 
FIGURE 4. Definition of rectangle PQQ,Pl in the characteristic plane. 

Finally, let ,8-$b(0,,8) =f(P). Then by (37) and (15), 

J = -31im- 
f+2Pf”  

if it exists. Now suppose lim u(O,,8) = a, = 0. Then (30) and (15) implyf(P) < 0 
for sufficiently small ,8, and the same follows forf’(P) from (37). Hence, 

Em a(0, P)/b(O, P) 
exists and a(0 ,p )  = O[b(O,P)],  a t  most. But by (36) and (38) a~-.-’b(O,P)-+O, 
since a, --f 0 together with &b and we are supposing a -+ 0. Therefore (39) reduces 
to a, = O(aL), and from (36), ab = O(c9I4). It follows from (15) and (36) that 

a(c-%)/ap = - c-3ab{& + O(U;)} --f - cc 
on the bore, while r 2 a b  -+ 0,  and that is incompatible with the conclusion that 
t ,  > 0 everywhere in region I1 ( 9  4). Hence, a. $; 0. 

lim (c-9’zaL) = - 2(ya,u:)-l 

now follows from (32) and (35), SO that the bore approaches the limiting charac- 
(40) 

As a corollary, 

teristic line L very closely in the characteristic plane (figure 3). Moreover, from 

and so, by (15), also 

and from (39), 

q o , ~ )  = o ( C 9 9 ,  
(35), (38) and (4% 

a(0,P)-a, = O ( C ~ ’ ~ ) ,  

ab -a, = O ( C ~ ’ ~ ) .  
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The physical interpretation of the Lemma is that the shore singularity of the 
water motion behind the bore-in the region I1 here studied-is a singularity of 
the acceleration and has a markedly directional character. Indeed, t;l and t F 1  
have the dimension of the fluid acceleration and may be loosely described as 
'characteristic acceleration components', from which &/at and &/ax may be 
obtained as awlat = (44-1 [(a + c )  t i 1  + (u - c )  t5y- y, 

au/ax = (44-1(t;1 + ti;"). 

By (16) ,  (29), (35)  and the Lemma 
t;l = O(a,lc3), t51 = O(C-3) = O(t-t) ,  

i.e. the purpose of the Lemma has been to deduce the absence of a shore singu- 
larity of tkl  from the monotoneity assumption that t i 1  > 0 on the seaward 
boundary. 

6. Approximate bore path 
The results of the preceding section determine a quite detailed quantitative 

approximation for the solution near the shore. To trace the bore path, it  is con- 
venient to  employ the parameter 

(42)  

related to the 'bore strength' M - 1 = (V - cb)/cb and surface elevation ratio 

(43)  
H = ho/hb by 

M 2  = + ( I +  H-'), (44) 

2 = c b / ( u b  + 2cb) 

Z-l(  1 - 22) = ub/cb = M (  1 - H ) ,  

accordingto(5), (6)and(8). at the shore,^ = O,by(17)and(26),anditisseenfrom 
(43) ,  (44)  that z increases monotonically from 0 to only +, as M-l increases from 
0 to I f .  A complete description of the bore development will be obtained if 
xb and t b  are expressed in terms of z, and since 

by ( 7 )  and (8), and 
xb = -y-lHc;, (45)  

H 

by ( a ) ,  (43) ,  (44)  and (28) ,  we proceed to calculate cb(z) from the fist of (9), which 
may be written 

by (42) ,  (29)  and (40).  From (4) ,  (12)  and (16) ,  

cb = z ( ~ O f a b - ~ t b )  = uOz+o(c%), (47)  

dab/bldtb = (ub+cb- v) / (zcbta)  = 4a,bt(Ub+Cb- v), 
and since (43) ,  (44) ,  (46)  and (47)  give dtb/dz = -2y-1u0z3+O(24), (28)  and (41)  
lead to 

tl.b =' - g(yao)-l  U ~ Z Y  + o(z?), 
and cb/uO = Z(l-HZ/M)-l [ 1 - i Z s - - ( y ~ o ) - 1 U ~ ~ + O ( Z 6 ) ] .  (48)  

t But the usefulness of x stems even more from the opportunity it affords for eliminating 
certain disappointing series by the help of the explicit relations (43) and (44). 
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(A less practical, but in some ways more illuminating, representation is 
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obtained from (48) and (42) to (44) by straightforward expansion.) 
The values of u, and a, depend on the seaward boundary condition; but that 

of a, is seen to have only a very small influence on the values of c,, x b  and t b  near 
the shore. The curve of bore speed Pvs shore distance x b  obtained from ( 4 8 )  is 
plotted in figure 5 for several values of a, with the left end of the curves corre- 
sponding roughly to a bore strength M -  1 = 0.15. Whitham’s (1958) approxi- 
mation (Keller et al. 1960) coincides with the curve for a, = 0 - 2 4 7 - l .  

I I I I I I I I 

- 0.16 - 0.12 - 008 - 0.04 0 

r%/d 
FIGURE 5. Variation of bore speed V with distance - xb from shore : 
+va,,/u: = 1.0, 0.1 and 0.05, respectively, for curves (l), (2) and (3). 

7. A particular seaward boundary 
To connect the present investigation more closely with the computations of 

Keller et al. (1960), consider briefly the case studied by them in which the beach 
is flat for z < X = x b ( T )  and the motion of the bore is uniform for t < T. 

If the bore is initially supercritical ( u b  > cb > O), it  is convenient to divide the 
region I11 of figure 2 into two regions 111’ and 111” where, respectively, x > X 
and x < X .  The uniform motion in region 111” furnishes Cauchy data, 

u = const. = ul and c = const. = c1 on x = X ,  
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for the motion in region 111'. Since these, as well as (2) and (3), can be satisfied 
by u = u ( x ) ,  c = c(x), the uniqueness theorem (Friedrichs 1954) shows the 
motion to be steady in region 111'. From (9) and and ( lo) ,  therefore, 

aalat = - (u+c)  aalax = 7, (49) 

whence t ; l= aa/at + - C) aajax = zyc/(u + c), (50) 
in region 111'. Since t ,  is continuous across the boundary C of region 11, the 
seaward boundary condition for region I1 is given by (50). By (2), hu = const. 
in region 111', so u > 0 and the monotoneity assumption is satisfied. 

c 

FIGURE 6. Diagram of (2, +plane in case where bore is initially subcritical (cf. figure 2). 

If the bore is initially subcritical (Cb > ub > 0), a receding 'simple wave' 
begins to propagate back into the region x < X ,  as soon as the bore crosses 
x = X, because (Stoker 1957) the beach is flat for x < X and the water motion is 
uniform in the region I11 (figure 6) seaward of the receding characteristic line 
through ( X ,  T). In  view of the discontinuity of beach slope, the line x = X is the 
proper seaward boundary for (2) and (3). I n  the simple wave region IV (figure 6) 
U-I-2c = const. (Stoker 1957), whence (49) follows again Esom (9) and (10). Since 
x = X is not characteristic, aa/ax is continuous across it and the seaward bound- 
ary condition is again given by (50). Since ub > 0 at t = T, the monotoneity 
assumption is satisfied at  that time, and remains so until a second bore either 
crosses x = X or forms at  a limit point t ,  = 0 onx = X ;  neither occurs (Keller et al. 
1960). 

In  both cases the results of Keller et al. confirm that the bore reaches the shore 
line within a finite time. 

8. Whitham's rule 
The results of $35  and 7 also throw light on the background of a simple 

approximation rule for the climb of an advancing bore on a beach proposed by 
Whitham (1 958). It is to apply the relation 

valid on the advancing characteristic lines, to the values of the variables on the 
seaward side of the bore. An ordinary differential equation for M (or V )  as func- 
tion of h, is then obtained. 

d u  + 2dc - g(u + c)-' dh, = 0, (51) 
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The original rule (51) cannot be tested directly, since it is not non-dimensional 
but the differential equation can be obtained as follows. By (43), (14) and (7), 
with H = ho/h, again, 

4M(2Mz- l)-lhodM/dho = - 1 - (2yM)-'H(I +a;)/(a;t,+tp) (52) 

and by (4), (12) and (16), 

= da,/d/3 = (ub + C, - V )  ( 2cb t,)-' (a; t ,  + ta). 

A second relation between a; and dtb/d/3 = a; t ,  + ta is obtained from differentia- 
tion of (43) and of the first of (14) along the bore, and a; and tp may then be elimi- 
nated from (52) to obtain, after some manipulation, the exact differential equa- 
tion for 2M(h,,) in the form 

4 hodM 2(2M2-1)(M4+3M3+M2-$H-1) - ( 2 M +  1) + -  _____ 
M - 1 aho ( M  + 1) ( 2 ~  - 1 ) 2 ( ~ 3  + ~ 2 -  M -  4) = H ( M  + 112 ( 2 ~ -  17 '69 

where 
(53) 
(54) 

Note that y = -gdho/dx is the acceleration scale defined by the beach, and 
2yc/(u + c) is the local value of t;l in water at rest or in steady flow ($  7); I' is 
therefore a wave strength ratio measuring the local strength of the advancing 
acceleration wave in the water. 

Whitham's rule is equivalent (Keller et al. 1960) to neglect of the right-hand side 
of (53). Near the shore, by the Lemma of $5, t;l = O(c*), and so Fb = O(cb), and 
since M = O(C;'), the right-hand side of (53) is O(c5), while the second term on the 
left-hand side is O( 1). Whitham's rule m'wt therefore furnish a good approxima- 
tion, as soon as the bore comes a t  all close to the shore, in all cases to which the 
assumptions of $9 3, 4 apply. 

For the particular cases of $ 7, moreover, the seaward boundary condition (50) 
is I' = 0, and (53) shows that Whitham's rule is then also a good approximation at  
the start of the bore's climb. 

The research here reported was supported by the U.S. Office of Naval Research 
under Contract Nonr-562(07). 
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